ANALYSIS

Funktionentraining

Alle Lösungen ganz ausfühlich.

Datei Nr. 46110

Stand 1. November 2016

FRIEDRICH W. BUCKEL

Oemo INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

www.mathe-cd.schule

Vorwort

Neben dem Text 46100, in dem nur Kurvendiskussionen geübt werden, findet man hier 23 umfangreiche Aufgaben. Oftmals sind es Abituraufgaben.

Hier eine kleine Zusammenstellung des Grundwissens für e und In:

Diese Grundlagen kann man in den Texten 12810, 12830, 12850 lernen und üben.

(1)
$$e^x = a \iff x = \ln a$$
 Beispiel: $e^0 = \ln 0 = 1$

(2)
$$n \cdot \ln(a) = \ln(a^n)$$
 Beispiel: $2 \cdot \ln 3 = \ln 3^2 = \ln 9$

$$e^{0} = \ln 0 = 1$$
 $2 \cdot \ln 3 = \ln 3^{2} = \ln 9$
 $\frac{1}{2} \cdot \ln 4 = \ln \left(4^{\frac{1}{2}}\right) = \ln \sqrt{4} = \ln 2$
 $e^{2 \cdot \ln 3} = e^{\ln 9} = 9$
 $e^{\frac{1}{2} \cdot \ln 4} = e^{\ln 2} = 2$

(3)
$$e^{\ln a} = a$$
 Beispiel: $e^{2 \cdot \ln 3} = e^{\ln 9} = 9$

$$e^{\frac{1}{2} \cdot ln \, 4} \, = e^{ln \, 2} \, = 2$$

(4)
$$ln(e^a) = a \cdot ln(e) = a \cdot 1 = a$$
 Umkehrung von (2):

Beispiel: In
$$e = 1$$

$$ln(e) = 2 \cdot ln(e) = 2 \cdot 1 = 2$$

(5)
$$ln(u \cdot v) = lnu + ln v$$
 1. Logarithmu regel

Beispiel:
$$ln(2e) = ln2 + lne = ln2 + 1$$

(6)
$$\ln \frac{u}{v} = \ln u - \ln v$$
 2. Logarithmusregel

Beispiel:
$$\ln \frac{e}{2} = \ln e - \ln 2 = 1 - \ln 2$$

Newtons the Mäherungsverfahren:
$$x_{n+1} = x_n - \frac{h(x_n)}{h'(x_n)}$$

ergibt eine Näherungsfolge für die Nullstelle einer Hilfsfunktion h. Sie ne Texte 41150 bzw. 41151.

Aus folgender Liste kann man erkennen, welche Zusatzaufgaben vorkommen.

Inhalt

	Funktionsterm	Inhalt	Aufgabe	Lös.
1	$f_a\left(x\right) = a \cdot x - ln(x)$	Ortskurve der Tiefpunkte, Tangente von A an K _a . Gemeinsamer Punkt zweier Tangenten	5	10
		Geniemsamer Funkt zweier Fangenten	3	19
2	$f_{t}(x) = x \cdot ln \ x - tx$	Integralfläche. Extremer Dreieckinhalt,		
		ein Normalenproblem	5	22
3	$f_{t}(x) = t \cdot \ln x + \frac{t-1}{x}$	Existenz von Extrempunkten und Wendepunkten		J
	() X	je nach t, minimaler Dreieckinhalt, Integralfläche		27
11	$f(x) = (x+2) \cdot \ln(x+2)$	Integralflächen	6	31
12	$f_{t}(x) = \ln(x^{2} - t)$	Zusammensetzung mit einer Parabel, Sietskeit		
		und Differenzierbarkeit. Rotationskörper wird mit Ebenen geschnitten: Maximale Schnittflächen. Tangentenaufgabe mit Newtonscher Iteration	7	33
13	$f_{t}(x) = \ln\left(\frac{1}{4}x^{2} + t\right)$	Existenz der Nullstellen Ortskurve der Wendepunkte	e	
	() (4)	Wendetangenten durch Q. Rotationskörper wird mit Ebenen geschnitten. Waximale Schnittflächen. Mittelwertsatz der Lifferentialrechnung	8	37
14	$f_t(x) = \ln x(t-x)$	Symmetri zu einer Parallelen zur y-Achse.		
		Integrali aci e, Abbildung einer Kurve auf eine ander	e,	
		Berechtung einer Stammfunktion	9	40
15	$f_t(x) = \ln \frac{x}{t}(4-x)$	K _t entsteht durch eine Abbildung aus K₁		
	4	Durch welche Punkte gehen Kurven K _a ?		
	\ \&\'	Achsensymmetrienachweis, Integralfläche	9	45
21	$f_t(x) = \ln \frac{6-x}{x}$	K _t entsteht durch eine Abbildung aus K _{1.}		
		Durch welche Punkte gehen Kurven K _a ?		
		Schnitt von K_1 mit $y = x$ mit Newton Iteration		
		Integralfläche, Punktsymmetrie zum Wendepunkt	10	49
72	$f_{t}(x) = \ln \frac{6 - x}{x}$ $f_{t}(x) = \ln \frac{t(1 + x)}{1 - x}$	Wertmenge der Tangentensteigungen, Integralfläche	€,	
	1- X	K _t entsteht durch eine Verschiebung aus K ₁		
		Durch welche Punkte gehen Kurven K _a ?		
		Achsensymmetrienachweis, Integralfläche	10	52
23	$f(x) = \ln \frac{x - 6}{x + 2}$	Symmetrieverhalten? Verschiebung der Kurve	11	56

Friedrich Buckel www.mathe-cd.schule

	31	$f_{t}(x) = \frac{t + \ln(x)}{x}$	Ortskurve der Hochpunkte, Integralfläche, Schnitt zweier Tangenten, Dreieck soll		
	32	$f_a(x) = \frac{\ln(ax)}{x^2}$	rechtwinklig werden, minimaler Inhalt. Ortskurve der Hochpunkte, Lege Tangente von O an K _a .	12 12	58 61
	33	$f_{t}\left(x\right) = \frac{t}{x^{2}} \cdot \ln \frac{x^{2}}{t}$	Tangentendreieck: Inhalt und gleichschenklig? Spiegelung an x = c. Integralfläche	13	63
	34	$f_a(x) = 3\frac{2a - ln(x^2)}{x}$	Minimale Streckenlänge, Stammfunktion berechnen. K_O teil eine Rechtecksfläche.	14	68
	35	$f(x) = 3 \cdot \frac{\ln(x^2)}{x}$	Nachweis einer Stammfunktion, Integralflächen	14	72
	41	$f_{t}\left(x\right) = t \cdot \left[ln(x+t) \right]^{2}$	Schnitt bestimmter Geraden, Ort kur e, Schnitt mit einer Parabel: Newtonsche Iteration		
	42	$f(x) = \left[\ln x\right]^2$	Integralfläche Integralfläche, Schnitzen y = x: Newton-Verfahren	15	74
	43	$f(x) = 1 - \left[ln(1-x)^2 \right]$	Extremer Rechtect innet. Stammfunktion durch Integration berechnen, Integralfläche, Tangente von Z an K.	15	78
			Byrünspunkt durch Newton-Iteration.	16	81
	51	$f_t(x) = \ln(e^x + te^{-x})$	Evistenz von Nullstellen, Extrem- und Wendepunkten, Asymptoten in Abhängigkeit von t.	17	(17)
	52	e ^x 1	Umkehrfunktion	17	(17)
		W _C			
<)	$f(x) = \ln \left \frac{\sigma}{e^x + 4} \right $			

Friedrich Buckel www.mathe-cd.schule